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These properties are the foundation of the RX algorithm. I will refer to these
properties as (1) time precedence, (2) covariation or association, and (3)
nonspuriousness (/3, /4).

Causality can never be proven using observational data. The persuasiveness
of a given demonstration simply depends on the extent to which the three
properties have been shown.

7.2. Methodology of the Discovery Module

The function of the discovery module is to find candidate causal
relationships. The discovery module exploits only the first two properties of
causal relationships to do this: time precedence and covariation.

The discovery module considers all pairs of variables {A, B}, where A and B
are either primary attributes in the data base or are derivable from primary
attributes. It attempts to determine whether the data suggest that A causes B, B
causes A, both, or neither. The output of the discovery module is an ordered
list of hypotheses. A researcher may designate which potential causes and
effects are of interest. For example, certain drugs and diseases might be tagged
as being of interest in exploration. The algorithm is intrinsically slow, O(n?),
where n is the number of variables; however, it makes up for this inefficiency
by its sensitivity and the speed with which simple correlations can be
performed.

A pairwise algorithm was chosen for the discovery module after months of
experimentation with multivariate methods. The latter cannot be applied to
data of the type recorded in the ARAMIS data base without extensive loss of
information. The reason is that values are only sporadically recorded and
patients differ widely on covariates. The general philosophy in all RX
procedures in either the discovery module or the study module is to analyze
data only within individual patient records. That is, data in two patient records
are never combined before statistical analysis. The computational expense
incurred by analyzing individual patient records will decrease markedly when
multi-cpu machines become standard.

The basic algorithm uses a sliding nonparametric correlation performed on
data from an individual patient’s record. The principle underlying a lagged
correlation is illustrated in Fig. 3. Given a tentative cause A and effect B, the
basic tool for uncovering a casual relationship is the Spearman correlation
coefficient r(A, B,7), where 7 is the time delay used in computing the
correlation.

7.2.1. Selection of Patients for Correlation

In the discovery module only a sample of the patient records are analyzed.
The sampling procedure uses a precomputed index called a records list
associated with every variable in the data base. The records list is a sorted list
of the form ((patient,, n,), (patient,, n,), . . . , (patient,, n,)). The list
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F1G. 3. The principle underlying lagged correlation.

identifies patients in descending order by their number of recorded values for
the variable. That is, patient; has n, measurements of the variable, and so on.

The sample of records that are analyzed for a given pair of variables {A, B}
is the sample P§ 5, where this is the set with the largest number of pairs of
measurements of A and B. Let K denote the number of pairs in the set P§ g). In
experimental trials of the discovery module, K was set to 10.

The advantage of choosing the sample to be those patients with the most data
on A and B is that ‘‘one might as well look where the looking is best.”’ If a
relationship exists between A and B, then it will be easiest to detect in patients
with lots of data on A and B. This heuristic is particularly valid in medical data
when variables are more apt to be recorded when they are abnormal.
Therefore, the frequency of observation tends to be correlated with the
variance of the variable.

Correlations for the records in P§y 5, are computed as

for each record in P§, g collect
[for each 7in T* collect r(A, B, 7)].

The collect operator denotes assembling a set composed of the value of each
iterand. The time delays in 7% over which the correlations are performed are
based on information from the knowledge base. That is, the algorithm makes
use of prior information on the expected time delays of broad classes of causes
and effects.

7.2.2. Combining Correlations across Patients

That various correlations within and across patient records are based upon
different numbers of measurements poses a difficulty in combining them. Given
equal correlations, we would like to assign more weight to records with more
data. Using the p value of the correlation achieves this and also facilitates
combining correlations.

The p values from the above procedure may be diagrammed as
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Here p;; denotes the p value on the ith patient at the jth time delay. By the
method of Fisher, the p values may be combined to form an overall score s for
each time delay 7;:

s(A, B, 75, P{ap) = _2210g([)i,7j)

where the sum is over all patient records in P, g;. It can be shown (/5) that the
scores s are distributed as x2 on 2p degrees of freedom. Since the distribution of
the scores is known, their statistical significance may be calculated. Because of
autocorrelation, the differences between scores determined at different time
lags may not be distributed x2. However, the significances are not taken
literally by the discovery module, but are merely used to rank the hypotheses in
terms of promise.

If the difference between the forward and backward sets of scores is large, a
strong time precedence of association is implied. Since time precedence is not a
sufficient condition for causality, spurious associations may also be reported as
significant.

The output of the discovery module is a list of dyadic relations ranked in
descending order by strength of unidirectionality of association. The algorithm
has proven to be a sensitive, if nonspecific, detector of causal relationships,
and is usually capable of accurately discriminating time precedence and
determining approximate onset delay.

In the discovery module, only the properties of time precedence and
covariation are used in a blind search for clues to causal relationships. Included
in its output are many spurious relationships. The objective of the study
module is to eliminate those relationships and to carefully examine those that
remain in order to detail their characteristics and to store them in the KB.

8. THE STUDY MODULE

The study module is the core of the RX algorithm. It takes as input a causal
hypothesis gotten either from the discovery module or interactively from a
researcher. It then generates a medically and statistically plausible model of the
hypothesis, which it analyzes on appropriate data from the data base.

The study module is patterned after a sequence of steps usually undertaken
by designers of large clinical studies. Its design may be considered an exercise
in artificial intelligence insofar as it emulates human expertise in this area.
There are at least six persons whose knowledge is brought to bear in designing,
executing, reporting, and disseminating a large database study. We may think
of the data-base research team as consisting of a doctor, a statistician, an
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TABLE 2

STEPs PERFORMED BY THE STUDY MODULE

. Parse the hypothesis.
. Determine the feasibility of the study on the database.
. Select confounding variables and causal dominators.
. Select methods for controlling the causal dominators.
. Determine proxy variables.
. Determine eligibility criteria.
. Create a statistical model.
(a) Select an overall study design.
(b) Select statistical methods.
(c) Format the appropriate database access functions.
8. Run the study.
(a) Fetch the appropriate data from eligible patient records.
(b) Perform a statistical analysis of each patient’s record.
(c) Combine the results across patients.
9. Interpret the results to determine significance.
10. Incorporate the results into the knowledge base.
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archivist, a data analyst, a technical writer, and a medical librarian. The study
module, in conjunction with the knowledge base (KB), emulates part of their
expertise. The steps in the study module appear in Table 2.

8.1. Determination of Feasibility of Study

The study module may be operated automatically in batch mode, or it may be
run interactively, enabling a researcher to modify the evolving study design. In
this presentation we shall assume that it is being run interactively. Throughout
this section we shall use as an example the hypothesis that the steroid drug
prednisone elevates serum cholesterol.

The first general task of the study module or of the **data-base research team’’
is to determine whether a particular study is feasible given the knowledge and
the data available. The first step is the recognition by the program of the terms
used in the hypothesis.

Suppose a researcher enters the hypothesis prednisone elevates cholesterol.
A top-down parser is applied to this input string. The pattern that matches is
(variable relationship variable ) where variable may be any primary attribute or
derived variable in the medical KB. As the parser matches the tokens in the
input, it determines their classification in the KB.

Prednisone is a known concept.
It is classified as a Steroid which is a Drug which is an Action.

Elevates is a known concept.
It is classified as a Relationship.

Cholesterol is a known concept.
It is classified as a Chemistry which is a Lab-Value which is a State.
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The classifications are simply determined by following the generalization
pointers in the knowledge tree. The classification of each variable is not only of
interest to the user but facilitates the inheritance mechanisms discussed above.
For example, properties of the class steroids may be inherited by the drug
prednisone, if they are needed in the course of the study.

To study the relationship between prednisone and cholesterol, both variables
must have been recorded in some patient records. Hence, the program next
examines the intersection of their records lists.

Cholesterol

records: (P78 32)(P118 25) - - - (P967 1))

The list here denotes that patient 78 had 32 recorded values for cholesterol,
patient 118 had 25 values, and so on.

8.2. Confounding Variables and Causal Dominators

The principal objective of the study module is the demonstration of
nonspuriousness. In any observational drug study, as in the current one, the
possibility must always be addressed that the effect of interest was caused by
the disease for which the drug was given rather than by the drug itself. The first
step in demonstrating nonspuriousness is in identifying the set of possible
confounding variables.

A confounding variable is any node C that may cause a clinically significant
effect on both the causal node A and the effect node B in our hypothesis. The
“*clinical significance’” of a given change in a variable is determined by a prior
partitioning of that variable’s range. Every real-valued object in the knowledge
base has stored in its schema a partition list that divides its range into clinically
significant regions.

Let C be the set of known confounders. The determination of C involves
tracing the directed graph in the KB starting from A and B.

C = intersection[antecedents(A), antecedents(B)]

where the list antecedents (A) is the set of nodes that may produce a clinically
significant effect on A. The antecedents set of a node is calculated by traversing
the causal network in the KB. In the current example, the set C is determined
to be {ketoacidosis, hepatitis, glomerulonephritis, nephrotic syndrome }.

Having determined the variables in C, the program displays the causal paths
connecting them to A and B. The paths for glomerulonephritis appear below.
The intensities of intermediate nodes are calculated using the regression
coefficients stored in sequential causal relationships.

Glomerulonephritis {50% activity} is treated by Prednisone {30 mg/day},

Glomerulonephritis can cause Nephrotic Syndrome {4 g proteinuria/24 hr}
which is treated by Prednisone {20 mg/day},

Glomerulonephritis can cause Nephrotic Syndrome {4 g proteinuria/24 hr}
which increases Cholesterol {65 mg/dl}.
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8.3. Causal Dominators

To increase statistical power and stability of estimation it is usually desirable
to control for as few confounding variables as possible. Since the set C in any
real study is apt to be quite large, it is desirable to control for only the
essentials. The set of causal dominators C* is the smallest subset of C through
which all known causal influences on both A and B flow.

The set of causal dominators C* is determined in the present computer
program by the following algorithm. Assume we are interested in determining
whether A causes B. Let us designate by P the set of proximate causes of B;
that is, P is simply the set of nodes on B’s affected-by list. We first check to
determine whether any nodes in P canreach A, i.e., may also causally influence
A, however indirectly. Any of those nodes in P that can reach A are appended
to the set C* of causal dominators, which is initially empty. Call this set of
nodes P,. Then the nodes in P, are blocked by placing flags on them. This
prevents flow through them on subsequent iterations. Next, consider the set of
nodes P, = P — P,, and generate the set of all proximate causes of the nodes in
P,. Call this set Q. If we now assign P = Q and iterate the above sequence, the
set of causal dominators C* is generated. The algorithm is admittedly
inefficient, but adequate for the size of networks with which we have dealt. In
the current example, glomerulonephritis is deleted from the confounders since
its confounding influence is entirely through nephrotic syndrome.

8.4. Controlling Other Variables

8.4.1. Variables Related to the Cause

Suppose prednisone affects cholesterol in some fashion; it is possible that
related drugs may also affect cholesterol. We may also want to remove their
influence by controlling them. Generally, we would like the program to suggest
to us variables related to the cause, since they may also be confounders. These
variables may not be in the set C, since causal paths between them and the
effect may be unknown.

To select this set of variables related to the causal variable, the program uses
the hierarchical structure of the KB. For example, since prednisone is one of
the steroids, RX controls for the other steroids. These are the
siblings(prednisone) = {dexamethasone ACTH}: nodes in the same class,
steroids.

8.5. Determination of Methods for Controlling Confounding Variables

Three general methods are used by RX to control confounding variables:
(1) eliminate entire patient records, (2) eliminate time intervals containing
confounding events, and (3) control statistically for the presence of the
confounder. Eliminating patient records is always the safest and most
intellectually reassuring. With stastical control, doubt always remains as to
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whether the confounder has been entirely eliminated. When eliminating time
intervals, the possibility that the confounding influence extends beyond the
interval is always possible. On the other hand, eliminating patient records is the
strategy most wasteful of data. There may be too few records left to analyze, or
the generalizability of the result may be diminished.

To determine which method to use for each confounder, some decision
criteria must be used. In making this decision and others discussed later, the
study module uses decision criteria stored in the KB in the form of production
rules.

8.6. Production Rules

Production rules have been widely used in artificial intelligence research to
store domain knowledge (/6, /7). A production rule is an if/then rule
consisting of a premise and conclusion.

The rule below is stored with other similar rules in the schema for control
methods. To choose a control strategy, the rules are exhaustively invoked.
Some rules may be used to resolve conflicts, if more than one control method is
suggested.

IF the number of patients affected by a variable

is a small percentage of the number of
patients in the study,

AND  the variable is present throughout those records,
THEN eliminate those records from the study.

The premise and conclusion of each production rule consist of a few lines of
machine-readable code. In some systems (/7), the code may be mechanically
translated into English upon request. To avoid the attendant complexity and to
improve the quality of translation, the RX KB simply stores an English
translation of each production rule.

In writing programs that use much domain knowledge, it is advantageous to
separate the specific knowledge from the general algorithms that use it.
Production rules are one method for achieving this modularity. The advantages
are that (1) knowledge is more easily examined and updated, (2) dependencies
among the knowledge are more easily discovered, and (3) the homogeneous
format lends itself to machine translation.

8.7. Controlling Confounders

To determine how a particular confounder is to be controlled, the following
information is first determined: N, the number of patient records in the study;
Jorecords, the fraction of records affected by the confounder; and %visits, the
average fraction of visits affected. Each of these parameters is calculated using
the information in the records list for each confounding variable.

If %records or %visits are low, then either records or time intervals may be
eliminated. The rules tend to favor the elimination of records if N is high. Only
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if N is low and %records or %visits is high is statistical control of the
confounder considered.

While the program is running the user may request a display of the rules that
determined the choice of strategy. The user, as always, may override the
decision made by the program.

In the prednisone/cholesterol study the program makes the following
selections.

Dexamethasone No control needed, since no values were recorded
in the data base

ACTH No control needed

Nephrotic Syndrome Control statistically using albumin as a proxy

Hepatitis Eliminate affected time intervals

Ketoacidosis Eliminate affected time intervals

8.8. Choice of Study Design and Statistical Method

Both the study design and the statistical method are selected using decision
criteria stored in production rules in the KB. The choice of study design in the
present system is simply a choice between a cross-sectional versus a
longitudinal design. In a cross-sectional design each variable is sampled once in
a patient’s record; in a longitudinal design variables are repeatedly sampled
over time. The longitudinal study design has the advantage of making use of
temporal information and multiple observations of variables within individual
patient records. A cross-sectional design is only chosen when a longitudinal
design is not feasible.

The selection of a particular statistical method uses knowledge encoded in a
hierarchically organized, statistical knowledge base. The organization follows
the conventional classification as in Ref. (/8) or (/9).

On the property list of each node in the tree is an objectives, a prerequisites,
and an assumptions property. The objectives property describes the goals of
the method. The prerequisites property describes the conditions that must hold
for the method to be mechanically applied. The assumptions property
describes the assumptions that must hold for the result to be valid.

Multiple regression

objectives: linear model
prerequisites:
one dependent variable
two or more independent variables
measurement level of dependent variable = real valued
measurement level of independent variables = real valued
number of observations > 1 + number of independent variables
assumptions:
independent and identically distributed errors
normally distributed errors
linear and additive effects
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An example of the schema for multiple regression appears above. The
schema stores not only the English text but the equivalent machine-executable
code.

To select a statistical method the objectives and prerequisites properties
must satisfy the constraints of the study. The tree structure of the KB is used to
prune limbs that are not applicable. When there is more than one applicable
method, production rules at intermediate nodes arbitrate among methods. The
present program does not determine whether the assumptions of a method have
been fulfilled; they are merely displayed. It does make available tables and
plots of residuals, however, so that the assumptions can be manually checked.

The present version of this robot statistician is rudimentary. Each of the
nodes in the statistical KB contains about as much knowledge as is shown for
multiple regression. No knowledge or methods are present for critically
analyzing a fitted model or for revising the model. The current emphasis is
simply in selecting a method that may be mechanically applied.

8.9. Composition of Data Base Access Functions

In order to apply the selected analytical methods to the appropriate data, the
data must be sampled from patient records at times that reflect the time delays
inherent in the underlying processes. These time parameters are obtained by
the study module from information in the KB.

For the longitudinal design in the present example the following model is
created:

Acholesterol = B, + B; Aalbumin + B, A log(prednisone),
where

Acholesterol = cholesterol(¢) — cholesterol(? pene);

Aalbumin = albumin(z — 7yg) — albumin(? ,cno1 — Tng);

and

A log(prednisone) = log[prednisone(? — Tpreq)]

— log[prednisone(? penol — Tpred)]-

The time 7., denotes the time of measurement of the cholesterol previous
to the present one, and 7yg denotes the estimated delay from the start of
nephrotic syndrome to the establishment of a steady state for cholesterol. The
symbol 7,4 is the analogous onset-delay for prednisone. No values are
sampled during episodes of hepatitis or ketoacidosis. Some of the time
relationships that might be seen in one patient’s record are illustrated in Fig. 4.

Next, the mathematical model must be translated into the appropriate
data-base access functions. The function create-access-functions uses
information in the schemata for the variables in the model to format the
appropriate access functions. For example, the values for the onset-delays and
the need for the log transform are retrieved from the schemata for nephrotic
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syndrome and prednisone. The estimated time delay for the effect of
prednisone on cholesterol is obtained from the discovery module.

8.10. Determination of Eligibility Criteria

All patients in a data base may not be eligible for a particular study.
Eligibility criteria in the current example are automatically formatted based
upon the number of relevant observations in a patient’s record and the
within-patient variance in the causal variable.

The study design cannot be executed on patient records in which there are
less than four sets of observations (= 1 degree of freedom for the mean + 2 df
for Aalbumin and for Aprednisone). Furthermore, patient records are excluded
in which the coefficient of variation in log prednisone is below threshold.

8.11. Statistical Analysis: Fitting the Model

Until July 1980, all statistical analyses were performed using SPSS (20) as a
subroutine; however, this incurred the inefficiency of having to write and read
files in formats intended for human usage. Currently all statistical analysis is
performed using IDL (6). Written in INTERLISP, IDL makes available fast
numerical computation, matrix manipulation, and a variety of primitive
operators for statistical computation.

Most of our studies are sufficiently large that statistical analysis requires use
of a separate core image (separate job). The study module writes the study
design to disk, then calls IDL. IDL reads the study design, executes it, writes
the results to disk, then calls the study module.

8.11.1 Longitudinal Design Using Weighted Multiple Regressions

The method of analysis that we have most extensively developed combines
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the results of separate multiple regression analyses performed on individual
patients. Recall that individual patient records differ in quantity of data and
greatly vary on covariates. By analyzing each patient’s record separately, we
can determine the distribution of an effect across patients and obtain
information as to why some patient’s exhibit an effect and others do not.

Naturally, we are interested in knowing whether a given causal relationship
is statistically significant in the study sample as a whole. The analysis of
significance is complicated by the fact that patients have widely varying
amounts of data. Intuitively, one would like to weight most heavily those
patients in whom a relationship has been most precisely determined, e.g., the
patients with the most data; however, these patients may be unrepresentative.

The approach we use is a mixed model. The regression coefficient for each
patient is weighted by the inverse of its variance. The mathematical
justification for this procedure lies beyond the scope of this paper but may be
found in Ref. (/). When there is a large variation in the effect across patients,
perfect precision on any one patient is of little advantage, and all patients are
weighted nearly equally. When across-patient variation is small, weighting by
precision is more appropriate, and the weights diverge.

8.12. Interpretation of Results

The final result of the longitudinal design is an estimate of B, the
unstandardized regression coefficient of the effect on the cause, and var(g), its
variance. The ratio B/[var(B8)]* is approximately distributed as a ¢ statistic on n
— 1 degrees of freedom, where n is the number of patients in the study. A
two-sided p value is calculated using the 7 statistic.

Presently, the interpretation of the results of a study depend only on the
magnitudes of B8 and its corresponding p value. A significant p value does not
necessarily mean the result is medically significant. Even an inconsequentially
small change in the effect will become significant at a given p value, if the
number of patients is large enough. The program for interpretation uses the
following heuristic. If B is large, then for a given p value, it assigns a higher
validity to the result than if 8 is small.

The clinical significance of 8 is determined by the magnitude of its expected
influence on the effect variable in the study. This is illustrated in Table 3, which
shows the expected distribution of cholesterol given prednisone at 30 mg/day.

Recall that the validity score is a component of every causal relationship
stored in the KB. The validity score is measured on a scale from 1 to 10
summarizing the state of proof of a relationship. The highest score that a study
based on a single nonrandomized data base can achieve is 6. Higher scores can
be obtained only from replicated studies, the highest scores requiring
experimental manipulation and known mechanism of action. A score of 6
means that ‘‘strong correlation and time relationship have been demonstrated
after known covariates have been controlled in a single data-base study.”

The discovery module populates the KB with causal links of validity between
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TABLE 3

DISTRIBUTION OF THE PREDNISONE/CHOLESTEROL
EFFECT ACROSS PATIENTS?

Range of Percentage Magnitude of
cholesterol of patients change
100-150 0 Extreme —
150-195 0 Strong —
195-210 0 Moderate —
210-225 0 Weak —
225-230 (\] Equivocal —
230-235 0 Equivocal +
235-250 0 Weak +
250-280 10 Moderate +
280-360 82 Strong +
360-700 8 Extreme +

2 Distribution across patients of cholesterol (mg/dl),
given a baseline value of 230 mg/dl and given a change in
prednisone from 0 to 30 mg/day.

1 and 3. The study module overwrites the links that it explores, assigning to
those that it confirms scores between 4 and 6.

A statistician or researcher might choose to pursue a given study further
asking, ‘‘have the confounding variables in C* been adequately controlled?”’
‘“Are the residuals in each of the regressions independent and identically
distributed?”” ‘*What accounts for the differences among patients?”’ A
researcher can pursue these questions interactively in RX, incrementally
improving the mathematical model (2/); however, the automation of this kind
of inquiry will require building much greater knowledge into the ‘‘robot
statistician.”’

9. MEDICAL RESULTS

The medical results reported here were generated by running the discovery
module and then the study module on a sample database containing the records
of 50 patients with systematic lupus erythematosus (SLE). Many patients
had multisystem involvement including glomerulonephritis and nephrotic
syndrome.

The effects that were confirmed by the study module for the steroid drug
prednisone are shown in Table 4. To illustrate the interpretation of Table 4, the
second row of the table means that prednisone is thought to cause an increase
(+) in cholesterol, that the time delay is ‘‘acute’ (less than one average
intervisit interval), and that the effect is highly statistically significant (p =
.0001). The study module automatically incorporated these new links and
details of the studies into the knowledge base in the format discussed above.
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TABLE 4

EFFECTS OF PREDNISONE

Direction Onset-delay p Value
Weight + Chronic <.0001
Cholesterol + Acute .0001
WBC + Acute .0004
Neutrophils (%) + Acute .003
Lymphs (%) - Acute .003
BP-diastolic + Acute .004
Glucose 4+ Acute .007
Hemoglobin + Chronic .009
Wintrobe ESR - Chronic .01
Platelets + Acute .02
Temperature — Chronic .05
Anti-DNA — Chronic .08
Eosinophils (%) — Acute .15
Urine-RBCs - Chronic 17
Creatinine - Chronic .19

Almost all of the acute effects appearing in the table have been extensively
confirmed in the medical literature. The effect of prednisone on cholesterol,
strongly supported by this study, has been reported only a few times
previously. No previous study has recorded the reproducibility of the effect
over time or the interpatient variability as was done here.

The chronic effects of prednisone shown in Table 4 are those appearing in a
setting of severe SLE. Literature confirmation of these effects has been scant.
Because of small numbers of patients, the chronic effects shown here must be
further studied. Tables of other empirical results and a discussion of the
statistical models used in these studies may be found in Ref. (/).

10. SUMMARY

The methods described here emanate from a small set of operational
properties of causal relationships. The discovery module uses a nonparametric
method for producing a ranked list of causal hypotheses based on strength of
time precedence and association. The study module uses a consensual causal
model stored in a knowledge base to determine all known confounding
variables and to determine appropriate methods of adjusting for them. The
statistical model of the tentative causal relationship is then applied to a set of
data. If the results indicate that a relationship is significant after controlling for
confounding influences, then a new relationship is incorporated into the KB.
Subsequent studies may make use of this new link.

All components of the study module can be used in an interactive mode to
enable a researcher more control in determining the course of the study. For
example, the causal model stored in the KB can be queried interactively or
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changed in the course of a study as new information becomes available. All
phases of the statistical analysis can also be interactively modified.

Any methodology that draws causal inferences based on nonrandomized
data is subject to an important limitation: unknown covariates cannot be
controlled. The strength of the knowledge base lies in its comprehensiveness,
but even so, it cannot guarantee nonspuriousness. Any single study,
particularly one using nonrandomized data, must be viewed skeptically. For
this reason, the most conclusive causal relationships that RX discovers are
always assigned a modest validity. Only through repeated studies, particularly
through experimental manipulation of the causal variable, can a given result
become more definitive.
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